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Overview 
The goal of this report is to document the screening for ancient DNA of bone samples from 
each of three Lead Coffin Burials from Historic St. Mary’s City. 
 
Methods 
The screening of these samples was based on a modified version of protocols previously used 
in several published papers from the Reich laboratory at Harvard Medical School.1-4 Table 1 
shows the results. Briefly: 
 
(1) A Dremel tool with a sterile disposable drill bit was used to take 43-82 mg of powder 

from each sample after cleaning the surface with a disposable sanding disk. 
 

(2) DNA from the powder was extracted for each sample.5 
 

(3) 30uL or 3uL of DNA extract was converted into barcoded non-UDG-treated Illumina 
sequencing libraries, a total of five libraries for the three samples.6 Two of the libraries 
passed standard wet laboratory quality control (the others had evidence of inhibition). 
 

(4) The two libraries passing quality control were hybridized to oligonucleotide probes 
targeting the mitochondrial genome.1,7 The enriched libraries were sequenced on an 
Illumina NextSeq 500 instrument using 2×76 bp reads. Identifying barcodes and adapters 
were trimmed, read pairs with at least 15 base pairs of overlapping sequences were 
merged, and the merged sequences were mapped to the RSRS mitochondrial DNA 
reference genome,8 using the Burrows Wheeler Aligner9 (bwa) and the command samse 
(v0.6.1). Clusters of molecules duplicated during the laboratory process were identified 
by reads with matching start and end position and orientation, and were represented 
using the single read with highest quality. A mitochondrial consensus sequence was built 
and a haplogroup was called as previously described.1 
 

(5) The two libraries passing quality control were hybridized to oligonucleotide probes 
targeting approximately 1.2 million single nucleotide polymorphisms (SNPs)10 as 
previously described.3 Sequenced was performed and data processed in the same way as 
for the mitochondrial analysis with the exception that we mapped to the whole genome, 
using the reference sequence hg19.  
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Table 1: Results on the three St. Mary’s City individuals  

 
Note: Libraries S2098.E1.L2, S2098.E1.L3, S2097.E1.L2, and S2097.E1.L3 are not listed because of reagent failures. 
 
 
Results 
 
 (1) Summary of screening for each of the three individuals 
 
� A single library was made for HSMC-99-100/HSMC#1 (the adult male). This library 

passed quality control in the sense that at least 24% of cytosines in the last nucleotide of 
sequences were misread as thymines (authentic ancient DNA is expected to have at least 
10%11), the match rate to the mitochondrial consensus sequence is 99.6% indicating 
minimal contamination, and the coverage on autosomal targets is 326,801 SNPs. 
 
� Two libraries were successfully made for HSMC-99-200/HSMC#2 (the adult female), 

which were both inhibited or failed amplification. We stopped after two attempts. 
 
� Two libraries were successfully made for HSMC-99-300/HSMC#3, the second of which 

gave results consistent with authentic ancient DNA. A fraction 19% of cytosines in the last 
nucleotide of sequences were misread as thymines, the match rate to the mitochondrial 
consensus sequence is 99.9% indicating minimal contamination, and the coverage on 
autosomal targets is 618,843 SNPs. 

 
(2) The adult male and infant are genetically male and have minimal contamination 
The observed ratio of X chromosome to Y chromosome SNP coverage for the two samples 
that gave working ancient DNA (the adult male and the infant) were both consistent with 
male sex. Because males have a single X chromosome it is possible to use heterozygosity on 
chromosome X to quantify contamination (using the ANGSD tool).12 There was no evidence 
of contamination for either individual (both Z<2 standard errors from zero). Point estimates 
were 1.6% contamination for the adult male and 0.7% for the infant male. 
 
(2) Mitochondrial DNA haplogroups are different for the two individuals 
Mitochondrial DNA is inherited from mother to child. The mitochondrial DNA haplogroups 
inferred based on the consensus sequences are T2b4 for the adult male, and V for the infant. 
These are both consistent with Western European ancestry. The fact that the two haplogroups 
are different excludes the individuals from being full siblings. 
 
(3) Y chromosome haplogroups are consistent with being the same for the two individuals 
 
� The Y chromosome haplogroup call for the adult male is R1b1a2a1a (supported by the 

P311:18248698A>G and P310:18907236A>C mutations). 
 
� The Y chromosome haplogroup call for the infant male is a more resolved version of that 

for the adult male, that is, R1b1a2a1a2 (supported by the P312:22157311C->A mutation).  
 
These two individuals belong to a haplogroup that is common in people of western European 
descent and so the results are consistent with but do not prove a patrilineal relationship.  

Library ID skeletal code
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in first 
base
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mtDNA 
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 SNPs covered 
out of 1.2 million 

targeted 
S2099.E1.L1 HSMC,99,100/HSMC#1 Pass Proximal8right8Tibia Adult8male 308ul 24% 234 T2b4 99.6% M 326,801888888888888888
S2098.E1.L1 HSMC,99,200/HSMC#2 Inhibited Distal8right8Tibia Adult8female 308ul .. .. .. .. .. ..
S2098.E1.L4 HSMC,99,200/HSMC#2 Inibited Distal8right8Tibia Adult8female 38ul .. .. .. .. .. ..
S2097.E1.L1 HSMC,99,300/HSMC#3 Inhibited Right8temporal Infant 308ul .. .. .. .. .. ..
S2097.E1.L4 HSMC,99,300/HSMC#3 Pass Right8temporal Infant 308ul 19% 419 V 99.1% M 618,843888888888888888
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(4) Nuclear analysis implies a father-son pair 
Principal Component Analysis using smartpca in EIGENSOFT13 and comparison to 
individuals genotyped on the Affymetrix Human Origins array1 indicate that both individuals 
are Western European in ancestry, clustering closely with present-day English individuals 
(Fig. 1). We used PLINK14 to test the relatedness of the sample pair, and find that PI_HAT is 
0.4274, consistent with being first-degree relatives. 
 

Figure 1: Principal components analysis. We projected the two ancient individuals onto the first 
two principal components of 392 present-day European individuals2,15,16. The two colonial individuals 
cluster closely to each other at the edge of the cluster of 10 present-day English individuals. 
 
Conclusion 
Taken together, these results suggest that HSMC-99-100/HSMC#1, the adult male identified 
as Philip Calvert, is a first degree relative of HSMC-99-300/HSMC#3, the unknown infant 
who is genetically identified as a male. The two individuals do not share the same 
mitochondrial DNA sequence which excludes them as full siblings. Thus, they are a father 
and son, consistent with their matching Y chromosome haplogroups.  
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